
Introduction to Arduino and

Coding

14 June 2019

INTRODUCTION - (Just Read for Now!)

What will you be doing today?

• Coding (‘programming’)

• Measuring distances via ultrasound

• Displaying your measurements using screens and

coloured LEDs

What items will you need?

• Arduino

• Ultrasonic distance sensor

• LEDs and resistors

• A set of jumper wires

and a USB cable

What is an Arduino?

An Arduino is a programmable device which allows people to

easily develop electronics projects.

It can be programmed to do many different things - for

example, read data from sensors, control motors, and display

messages on a screen.

Arduinos are used all over the world in some amazing projects

such as: autonomous robots, DIY 3D printers, and drones!

MICROCONTROLLER

The ‘brain’ of the

Arduino!

USB PORT

Connect this to your

computer with a cable.

RESET BUTTON

Press this to restart your

program.

INPUT-OUTPUT PINS

Use these to connect to

sensors, LEDs, motors, …

How do I program an Arduino?

The Arduino is programmed using a computer and a piece of

software called an IDE (Integrated Development Environment).

This is where you will enter your code, check it for errors, and

then upload it to the Arduino via a USB cable.

DEBUG WINDOW

Status and error messages

are shown here.

VERIFY AND UPLOAD BUTTONS

Click to check your code for errors and

upload your code to the Arduino.

CODE WINDOW

This is where you enter

your Arduino code.

What does setup() and loop() mean?

By default, the code window will already contain two functions

(blocks of code with a given name):

setup()

and

loop()

The code written in the setup function is run only once –

when the Arduino is powered on. We will use the setup function

to tell the Arduino which sensors and LEDs we are connecting

it to.

After that, the code contained in the loop function is run

repeatedly – over and over again until the power is

disconnected from the Arduino. The loop function will be used

for our main code, doing things such as reading from the

sensors, calculating distances, and turning LEDs on and off.

What is an LED?

A LED (light-emitting diode) is an electrical device that can light

up. LEDs come in many colours and are a great way of

displaying simplified messages to a user.

Short leg of LED

is NEGATIVE!

Resistor controls

brightness of LED.

Connects to

the Arduino.

What is ultrasound?

Ultrasound uses reflections of waves to detect distances

between objects. It is called ultrasound because the waves

have a frequency higher than 20 kHz – which is outside the

range of human hearing.

You may have seen ultrasound devices used in hospitals to

examine babies in a mother’s womb, or ultrasound used by

bats to navigate the environment.

An ultrasonic sensor works as follows:

1. An ultrasonic wave is produced by the sensor.

2. It hits a surface and is reflected back.

3. The ultrasonic sensor picks up this reflected wave.

We can then use the time taken between production and

reception of the wave, as well as the speed of the wave, to

calculate the distance.

Receives the

reflected wave.
Produces an

ultrasonic wave.

Connects to the

Arduino.

Distance =

Speed x Time

ACTION – (Time to Get Started!)

Now that you know the basics of the devices we will be using

today, it’s time to start building and coding!

There are four tasks, each increasing in difficulty and building

on the previous one. Before you get started however, let’s

connect the hardware and setup the software environment.

Remember, if you need help with anything, simply ask one of

us!

Hardware

First, let’s connect the ultrasonic sensor, as well as the LEDs

and resistors to the Arduino. You can see which pins we need

to connect wires to using the picture below.

Once you have finished, ask one of us to check your

connections before moving on to the next part!

Software

Once you have correctly connected all pieces of hardware

together, connect the Arduino to your computer via the USB

cable. The Arduino should now be powered on.

Then, start the Arduino IDE on the computer.

We now need to tell the IDE how to communicate with the

Arduino. This can be achieved in two steps:

1. In the IDE, click on the Tools menu bar and then go to

Board:… . Select the following:

Arduino/Genuino Mega or Mega 2560

2. Next, still in the Tools menu bar, click on Port:… . A new

drop-down menu should open. Select the menu item

which has Arduino in its name.

Now the computer and the Arduino should be able to

communicate.

We’re almost ready to start now. Before we do you should

know that for each task you should perform the following

sequence:

1. Write your code into the code window.

2. Save your code to a file by selecting the menu

bar File and then selecting Save.

3. Once you are happy with your code, click the following

icon to check your code for errors:

4. If no errors have been found, you can now upload your

program to the Arduino by pressing this button:

Now you should have everything set up and it’s time to try out a

couple of programs!

TIP: Press CTRL+SHIFT+M to bring

this window up quickly!

Task 1 – Reading from the ultrasonic sensor

First off, we will try to get distance measurements from the

ultrasonic sensor and display them in what is known as a Serial

Monitor.

The Serial Monitor displays information sent from the Arduino

to the computer via the USB cable. You can view it by selecting

the menu bar Tools and then selecting Serial Monitor.

You should now see a new window appear that looks like this:

Data sent by

the Arduino

will be

shown here.

What do you think

long and float means?

In centimetres

per microsecond!

Open the “task1.ino” file. The code lines in standard

courier font should have been typed in for you.

Don’t worry if you don’t understand some (or most) of it – a lot

of it is simply telling the Arduino how to communicate with the

sensor. You will be writing the more interesting parts of the

program yourself!

1. First, let’s tell the Arduino which input-output pins we wish

to use for the ultrasonic distance sensor:

int trigPin = 12;

int echoPin = 11;

2. Then, we need to create some variables. Variables are

containers in memory that can store things such as

numbers, or text. We will need two: one to store the

duration between transmission and reflection, and one to

store the distance we calculate.

long duration;
float distance;

3. To calculate the distance, we also need to know the speed

of the wave! This is a constant however, because it does

not change.

const float wave_speed = 0.0343;

4. We are now ready to add code to the setup function.

Remember, this is a function that is run only once when the

program starts. Here we are going to tell the Arduino which

pins will be used as inputs, which pins will be used as

outputs, and that we wish to start the Serial connection.

9600 tells the Arduino to send

data back to the computer at a

speed of 9600 bits per second.

This transmits a 10

millisecond pulse.

We now listen for the echo

and measure the delay in

microseconds.

The Arduino transmits

the data back to the

computer.

We let the Arduino wait 100

milliseconds before running

the code again!

Code enclosed with /*

and */ is ignored by

the Arduino.

void setup() {

Serial.begin (9600);

pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

}

5. Finally, we can fill in the code for the loop function. This is

the code that will run over and over again, reading from the

ultrasonic sensor and calculating the distance.

void loop() {

 digitalWrite(trigPin, LOW);

 delayMicroseconds(5);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

/* TODO: Convert Delay (microseconds) to Distance

(cm) */

 Serial.print("Distance ");

 Serial.print(distance);

 Serial.println("cm");

 delay(100);

}

Now, it’s your turn! You may have noticed that the code

above is missing something (hint: TODO).

We need to convert the measured delay of the reflected wave

(given in microseconds) to a distance in centimetres.

Can you think of a way of calculating the distance to

the object given that you know the speed of the wave

and the overall time it took to the object and back?

Once you have an answer, enter your code before the Serial

commands. If you have any trouble or need a hint – ask one of

us!

If your code is working and has been checked by one of us,

move on to Task 2.

Task 2 – Lighting up an LED

Instead of using the Serial Monitor to show the exact distance

measurement, we now would like to make a red LED light up

when the distance from the sensor is below 20cm.

Again, we’ll give you the code for the setting up the LED (open

“task2.ino”). Then, you’ll have to do the more interesting bits.

1. Before the setup function and before the variable

definitions, there is a new line:

int redLEDPin = 5;

2. Additionally, in the setup function the following line of code

is added:

pinMode(redLEDPin, OUTPUT);

That’s all we need for now. Your task is as follows:

Can you think of a way of turning on the red LED

when the distance measured is below 20cm and

turning off the red LED when distance is above

20cm?

Here are some tips and hints you may find useful for this task:

a) You can turn on an LED by applying a voltage across it,

which is done by setting the output of the pin connected

to the LED to 5v.

This is done in code using:

digitalWrite(redLEDPin, HIGH);

b) Conversely to turn the LED off you set the output pin to

0v, which is done using:

digitalWrite(redLEDPin, LOW);

c) To execute a line of code only if a certain condition is

met (such as the distance being less than 20cm) an

if statement can be used. An example would be:

if (a == 6) {

// Code here runs if a is equal to 6

} else {

// If a is not 6 the code here runs

}

Once you have an answer, enter your code after your distance

calculation. If you have any trouble or need help – ask one of

us!

If your code is working and has been checked by one of us,

move on to Task 3.

Task 3 – Changing the brightness of the LED

Now, open “task3.ino”. Instead of simply turning the red LED on

and off, we wish to change the brightness of it depending on

the distance measurement acquired by the ultrasonic sensor.

In particular, …

Can you think of a way of increasing the brightness

of the red LED as the distance decreases?

And conversely, decreasing the brightness as the

distance increases?

The LED should be at minimum brightness when the

object is 40cm away and maximum brightness when

the object is 0cm away.

40cm

Sensor
Object

Here are some tips and hints you may find useful for this task:

a) You can turn on change the brightness of an LED by

applying analogue voltage. The greater the voltage, the

brighter the LED.

This is done in code using:

analogWrite(redLEDPin, brightness);

b) The brightness must be a whole number and can vary

from 0 to 255 with 255 corresponding to maximum

brightness of the LED.

c) The distance to the object can be mapped to an

appropriate brightness level using the following

function:

brightness =
(a − distance)

a
 × b

Can you think of a value for a and b so that the brightness is

255 when the distance is 0, and 0 when the distance is 40?

Once you have an answer, replace your old LED on/off code

with your new LED code. If you have any trouble or need a hint

– ask one of us!

If your code is working and has been checked by one of us,

move on to Task 4.

Task 4 – Controlling a Second LED

You should now have programmed the Arduino to increase the

brightness of the red LED when the distance measured by the

ultrasonic distance sensor decreases.

As a concluding task, we wish to add a second, green LED.

This LED should decrease in brightness as the distance

measured decreases – opposite to the red LED!

Now it’s your turn again. Open “task4.ino”. You should be able

to re-use code from the previous tasks to do the following:

1. Alter the brightness of the green LED depending

on the distance measured - as stated above.

2. The green LED should be at full brightness at

80cm and turn off at 40cm when the red LED

begins to turn on.

As before - once you have an answer, enter your code after

your previous red LED code. If you have any trouble or need a

hint – ask one of us!

Once you’re done ask one of us to check your final task.

Well done for completing all of the

tasks!

